INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 2549-2571

Multiple scattering of plane elastic waves in a fiber-reinforced
composite medium with graded interfacial layers

Hirotaka Sato, Yasuhide Shindo *

Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Sendai 980-8579, Japan
Received 11 August 1999; in revised form 3 April 2000

Abstract

In this study, we consider the multiple scattering of time-harmonic elastic waves in a metal matrix composite
containing randomly distributed parallel fibers with graded interfacial layers. In-plane compressional and shear waves
are considered. We assume same-size circular fibers of identical properties and same-thickness interface layers with
nonhomogeneous elastic properties. The method of solution consists of first solving the scattering problem by a large
number N of arbitrarily distributed fibers in an infinite matrix, the resulting equations are then averaged by considering
the positions of the fibers to be random with a statistically uniform distribution, and these averaged equations are
solved by using Lax’s quasicrystalline approximation. Numerical calculations for a SiC-fiber-reinforced Al composite
are carried out for a moderately wide range of frequencies and the effect of interface properties on the phase velocities,
attenuations of coherent plane waves and the effective elastic moduli are shown graphically. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The wave propagation through a composite medium with a random distribution of inclusions, with
interface layers, has been a subject of recent practical interest (Shindo et al., 1995; Shindo and Niwa, 1996;
Nozaki and Shindo, 1998). Recently, Shindo et al. (1998) analyzed the multiple scattering of anti-plane
shear waves in a metal matrix composite reinforced by fibers with interface layers.

The purpose of this study is to analyze the effects of graded interface layers and multiple scattering by a
distribution of fibers on the wave propagation of time-harmonic plane elastic waves in a fiber-reinforced
metal matrix composite. The same-size circular fibers of identical properties with same-thickness nonho-
mogeneous interface layers are assumed to be parallel to each other and randomly distributed with a
statistically uniform distribution. In-plane problem is studied, and both the direction of propagation and
the particle motion of the wave are at right angles to the fibers. The problem of the scattering of plane
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compressional (P) and shear (SV) waves by a large number N of circular fibers, arbitrarily distributed in an
infinite matrix, is analyzed and the resulting equations are then averaged, considering the positions of the
fibers to be random (Bose and Mal, 1974). The averaged equations are solved by using Lax’s quasicrys-
talline approximation to yield the propagation characteristics of the average waves (Lax, 1952). The par-
ticular case when the pair correlation function has an exponential form is examined in detail. The complex
wave numbers giving the phase velocities and the attenuations of coherent plane elastic waves, and the
effective elastic moduli for a SiC-fiber-reinforced Al composite are obtained numerically and shown in
graphs for various interface properties at designated frequencies. The method of solution is a generalization
of the previous one (Shindo et al., 1998).

2. Statement of the problem and scattering of in-plane compressional and shear waves by N fibers

We suppose the identical circular fibers of radius g, to be located within a large region S in an infinite
matrix. Let /, p, p, v be the Lamé constants, the mass density, the Poisson’s ratio of the matrix, and Ao, 4,
00> Vo those of the fibers. Let the fiber be separated from the matrix by a thick layer of uniform thickness /
with variable material properties. The geometry is depicted in Fig. 1, where (x, y, z) is the Cartesian co-
ordinate system with origin at o and (r, 0, z) is the corresponding cylindrical coordinate system. The layer is
composed of n cylindrical shells of homogeneous isotropic materials, and the material properties within
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Fig. 1. Circular fibers with interface layers and coordinate systems.
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each shell of inner radius a;_;, outer radius a; (I =1,2,...,n) and uniform thickness #; = a; — a;_; are
A1y Wy, py, vi. Labeling the fibers by suffixes i =1,2,..., N and taking suitable coordinate axes in a
transverse plane, let the boundaries of the ith circular fiber and the shells be denoted by C! (I =
0,1,2,...,n) and the Cartesian and cylindrical coordinates of those center o; (r,,, 0,, z) be (x;, y;, z) and
(r;, 0;, z), respectively.

The displacement components in » and 0 directions are u,. and uy while the component u. is absent
because the problem is plane strain. For the same reason, derivatives with respect to z are zero. Under these
conditions, the displacement components may be expressed in terms of two wave potentials &(r, 0,¢) and
P(r,0,t), where ¢ is the time by the following relationships:

- 00
w =11 8 (n

where @ and ¥ are wave potentials. Substituting Eq. (1) into Hooke’s law for a homogeneous and isotropic
elastic solid yields the following expressions for the stress components a,,., a9y and a,4:
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By making use of Eq. (2), the equations of motion of elasticity yield the following equations governing the
potentials ¢ and ¥:

1 2*® 1 *%
2p=— —— i e 3
v c2 o’ v e, o’ (3)
where V2 = 8%/0r% + (1/r)0/dr + (1/r%)3? /30" is the Laplacian operator in variables r and 0, and c,, ¢y, are
the compressional and shear wave speeds in the matrix,

l+2'u>1/2 (,U)l/z
cp = , cyy = | — . 4
’ ( p p @

We consider P wave propagating in the positive x-direction or a plane shear SV wave polarized in the y-
direction and propagating in the positive x-direction. Thus,

(= espltor - on) )
V' = Py expiilkyx — wt)},

where a superscript i stands for the incident component, o is the circular frequency of the wave and &y, ¥,
are the amplitudes of the incident P and SV waves. k;, and k, are the wave numbers of the compressional
and shear waves in the matrix,
1) 1)
kp = —, ks = —. (6)

Cp Csy

The wave potentials @ and ¥’ can be expanded as the summation of cylindrical functions as

@' = @y exp(ikyri, €08 0;,) > i"J,(kyri) exp{i(mb; — o)},

| e @
V' = Pyexp(ikyri, cos0,) > ", (ksr:) exp{i(m0; — wt)},

m=—00
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where J,( ) is the mth order Bessel function of the first kind (Watson, 1966). In what follows, the time
factor exp(—iwt) will be omitted from all the field quantities.

The potential fields in the matrix, the /th layer of the ith circular fiber and the ith circular fiber may be
expressed in the forms

N
=3
i=1
(p: = Z A,»,,,Hm(kpri) eXp(imQ,-),
. (8)
v =5,
i=1
q/; = Z B,-mHm(ksvr,-) exp(im@i),
= 3 (A, Hu(klr:) + ChJu(klr;)] exp(imb;),
mf;oc (9)
l[l[l = Z [Bl{mHm(kslvri) + Dl{m']m(kslvri)] exp(imei)7
;= 3 CpJu(kr:) exp(im0;),
" (10)
qj; = Z D?me (kgvri) eXp(imei)?
where superscripts s, £ and / (/ =1,2,...,n) denote the scattered component within a matrix, the trans-
mitted component within a circular fiber and the field quantity within an /th layer. 4;,, By, Afm, Bfm, Cl.’m,
D! ,C% and DY are the unknowns to be solved and H,,( ) is the mth order Hankel function of the first kind.
The wave numbers &}, k., (/ = 1,2,...,n) in the /th layer and k), &, in the circular fiber are given by
K=o [ =2 (I1=1,2,...,n),
b_t o _s (1)
kp = % ’ ksv = (—3 y
[ Cyy

where the compressional and shear wave speeds cfo, ¢! in the /th layer and cg, ¢ in the circular fiber are

i (a2 P w\'?
— | At2 — 1 —

p_(l’—l) s Csv_(p_]> (1—1,2,...,}1),
; 1/2 1/2
0 — ( Zot21 / P — ] /
P Po ’ sV Po ’

The total scattered field (8) in the matrix is taken to be a superposition of the scattered fields of every fiber,
where the latters can be expressed as the series representation of Hankel functions satisfying the outgoing
conditions at infinity.

The boundary conditions on Cj’. (1=0,1,2,...,n) are

(12)
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t o1 T |
ur/ Ujr Opj = Opy (r; = ap) (15)
. =ul., o, =qc! J— T

0j — 70p> roj — “r0j

Then, using the condition of continuity of displacement at P/ (a,, 0;,z) on C7, multiplying by exp(—iv0;)
and integrating from 0 to 2m, we have

n 0 n iv pn n n
A}, - H,(kya,) + 3 B H, (kya,) + C;
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i=lm=—00
where
Lim = % Jy " {Halkor)) exp(im0;)} o exp(~iv0,)d0; (i # ),
= H, n 5m\
o ) | (17)
Kijmy = 2%; o {Hu(keri) exp (lmei)}P;‘ exp(—iv0;)do; (i # j),

= Hm (ksvan)émv (l :])
Omy 18 the Kronecker delta. Using the addition theorem of Hankel functions (Bose and Mal, 1973), we get

Lijm = = [CXP (im0;;)(—1) (=1)Js(kpan) H(kor;i) exp{is(0; — Hji)}]
x exp(—iv0;)d0; = J‘,(kp VHuo (kpryi) exp{i(m — v)0;} (i # Jj), (18)
Kijm = 3= fo {exp (im0;;)(— l)mz (—=1)"Js(ksvan) Hy—m(ksyr;i) exp{is(0; 6/,)}}

m

Mg

x exp(—iv0,)d0; = J,(kswa,)Huoy (kori) exp{i(m —v)0;} (i # j),
where (r;, 0;) are the polar coordinates of o; referred to o; as origin. Thus, Eq. (16) becomes
n n Aﬂ n n Cr'lv A v
Mv(kpa,,,kgva,,){B,, } + K, (k an, K a”){Dj;?‘,} = M‘,(kpa,,,ksva,,){B{ }

Jv

@i
+ K (kpan, ksvan){ i g (19)
where
M (K'a,) M}, (k" a,)
M, (K'ay, K ay) = | 00 PR 20
(kpan, Kiyan) |:M21(kpa”) My, (kg,an) 20)
Mlvl (kga,,) = VHV(k;an) - k;anHv-f—l(k;an)a
MIVZ(k:va") = IVHV(k:va”)7 (21)
szl (kgan) = iVH\'(kgan)7

M, (kgyan) = —{vH (kg an) = ki antl (kGan) },

and a similar expression for K, (kya,, k,a,) with the vth order Hankel function of the first kind H,( ) re-
placed by the vth order Bessel function of the first kind J,( ) in Egs. (20) and (21) is
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N oo
@) = i"® exp(ikyro €08 0;,) + 3 37 AvmisHn(korii) exp(im0;),
i=1 m=—o0
. N 00
Vo= "Wy exp(ikarjo €08 0,0) + > > BimivHu(ksry) exp(imb;).

v
i=1 m=—o0

(22)

In Eq. (22), >_ denotes the sum over all circular fibers except the jth. Evidently, @/ and ¥/ are related to the
field at o; if the jth fiber is assumed to be absent. The conditions of continuity of displacement at

P/(as, 0;, z) on C; (1 =1,2,...,n—1) and P(ao, 0;, z) on C} give
A C! Al
M‘,(k;a,,k;va,){B? } + K‘,(kéa/,kéva,){DJ{v } — Mv(kf)“auks’vﬂal){Bﬁ] }
v v

Jv
Cl+1
I+1 I+1 jv
+Kv(kp al’ksv al){DH»l }7
Al

C? AL C!
K, (K, kgvao){ & } — M. (K, kgvao){ “ } + K, (Klao, KL ao) { & }
JV Jv Jv
The conditions of continuity of stress at P/, P/ (I =1,2,...,n— 1) and P} similarly give

n

A" cr
n n Jv n n JV
:unLv(kpam ksvan){B;,v } + .uan(kpamksvan){ D_;lv }

A, P,
= #L\,(kpan, ksva,,) ij + ,qu(kpam ksvan) l[’{, )

Al cl
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Jv Jv
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L, (kia,, ka,) = [ 1 (Kpa,) 12<ksvan>]’
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n kgyan : n n n
Ka,) = {vz — oy a)? } H,(Kla,) + Kia,H, 1 (Kla,),

kn a,,) = iV{(V - I)H"(kgva") - kgva"H‘”rl (kgvaﬂ)}’
1 (kna,) = v{(v — D)H, (kya,) — kna,Hy o (kja,) b,

p

) n _ 2 (k:v”n)z n n n
kla,) = —qv> —v —=3= tH (kla,) — k}a,H, 1 (K},a,)

and a similar expression for N, (kha,, kj,a,) with H,( ) replaced by J,( ) in Egs. (28) and (29). Solving these

equations interactively, we obtain equations for the determination of 4;, and B, as
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i) :‘Q"IP"{%:[ (v} (30)

The matrices P,, Q, in Eq. (30) are

(ksva())2 Qv
(kgvao)’iS,

(koo )iP,
(kpto)*R,

B ERENE]
&3 »1a

Pv = K\r(kpana ksvan) - ;%R:Z(S:)ile(kpam ksvan)a (31)
Qv = Mv(kpam ksvan) - ;TtR:l (S?)ilLv(kpana ksvan)~

The recurrence formulae for R!, S! are given by
Ri' = KV(kII)a[’ kival) - M"(k}])ah kéva/)(Qé)_lP{W (32)
S, = Ny(khay, kLya)) — Ly(Khar, kLya)) (Q)) ™' Py,
P, =K, (kjar1,kar) — ﬁRffl(Sffl)fl?h(kéalfl7ks/va171)7 (33)
Q, = My(Khay 1, Kha ) = F-RN(ST) Ly (ka1 KL ),
R? = Kv(kga(), kgvao), (34)
S? = N‘,(kga(), kgva()).

It can be shown that the coefficients P,, Q,, R,, S, have the properties,

P,=P, 0,=-0,, R.,=-R,, S_,=38, (v=0). (35)

3. The average field for a random distribution of circular fibers

We consider the positions of the circular fibers to be random. If we denote the position vector of o; by r;,
and the probability density of the random variable (ry,, T2, . ..,y) by p(ri,, I, - - ., In,), then due to the
indistinguishability of the circular fibers, it is symmetric in its arguments and we have (Waterman and
Truell, 1961)

p(rlerOa cee aan) :p(r[o)p(rlrano; cee 7, PR arNo‘rio)
= p(rio)p(Xo | Tio)P(F10: X205 - oo B [Fo, B, (36)
p(rio) = p(r1,), p(rj0|ri0) = p(r(r1,) (i #J),

where the probabilities with the vertical bar in their argument denote the customary conditional proba-
bilities. A prime in the first part of Eq. (36) means r;, is absent while two primes in the second part of Eq.
(36) mean both r;, and r;, are absent. For a uniform composite, the positions of a single circular fiber are
equally probable within a large region S of a cross-section of the material, and hence, its distribution is
uniform with density

_!
_S7
:07 l‘,-o¢S.

p(rio) Lo € Sa

(37)

If now o;, well within S, is held fixed, the distribution of the circular fibers around it will be circularly
symmetrical. Thus, p(r;,|r;) is a function of r;; alone, and we can write
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1
p(rjoltip) = S 1 —g(ry)l, 1, €S,
= 0» I € Sa

where the pair correlation function g(r;;) <1 is a decreasing function of r;;. The normalization condition of
p(rj|r;,) gives, in the limit as § — oo

(38)

1 R

Due to the impossibility of interpenetration of the circular fibers and their independence when they are
infinitely apart, we have

glry) =1, r;<2a,

40
= 07 rl'j — Q. ( )

A function satisfying these conditions is
g(ry) =1, rij < 2ay, @41)

= Vexp(—ry/L), ry;=2a,,

where V[0 < V < exp(2a,/L)] is the coeflicient and L > 0 is the correlation length.

We denote the conditional expectations of a statistical quantity f when either o; or o; and o; together are
held fixed as

<f>z = f J .ffp(l’lo, . ./.,I'Nn|l',-0)d’[1. .,.d’L'N,
g= 1" [P, vt 1) dy. iy,

where dt; (i = 1,2,...,N) is the volume element at r;,. To determine (4,,),, (B.); of Eq. (30), we take the
conditional expectations to obtain

(42)

(4,), = %(kpao)zip {1 @y exp(ikyri, cos 0;,) + no(1 — 1) Z L. roest —&(ry)}

m=—00

X (Aj,mﬂ,)inm(kpr,j) exp(imHj,-)drj}

+2 (ko) O, [z ¥y exp(ikgri, €08 0;,) + no(1 — —)WZ Jerpestl = 8(r)}
B () explimty)

(B, = (kpao)’R, [, @y exp(ikyri, €08 0;,) + o (1 — )m; Jomnestl — &)}
X (Ajy,,Hv)inm(kpr,-j) exp(imej,-)drj}

+ 2 (ksyao)*iS, {1 W exp(ikgri, €08 0;) + no(1 — 1) Z I st =8}

m=

X <Bj,m+v>inm (ksvrij) exp(imHﬁ)de} s

where ny = N /S = ¢/naj is the number of circular fibers per unit area and c is the volume concentration of
fibers in the matrix. Eq. (43) involve the conditional expectations with two circular fibers held fixed. If we
take the conditional expectations of Eq. (43) with two circular fibers held fixed, the resulting equations will
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contain the conditional expectations with three circular fibers held fixed, and so on. We shall eliminate this
hierarchy by assuming Lax’s quasicrystalline approximation (Lax, 1952), which involves the two-fiber
correlation function and implies

<Aiv>,‘j = <Aiv>,‘a <Biv>ij = <Biv>i, i #]. (44)

According to the extinction theorem when S and N become infinitely large (Lax, 1952), the incident wave is
extinguished on entering the composite, so that the corresponding terms in Eq. (43) can be dropped. Thus,
these equations reduce to

ck? . >, .
<Ai”1>i =21P, > jj\;fﬂfr,a|>zan{l - g(”_ii)}<A./'>M+V>jH\f'(kpr/’i) eXp(IVH/’i) dr;

V=—0C

ck2, e .
+ % On ; f\r/-o—r,-,,|>2a,, {1- g(rji)}<Bj«,m4rv>ij(ksvrjf) exp(iv0;) dt;,

(45)
ck? >, .
Bin)i =T R 22 Jio, 520, {1 = &) Hl s} Ho (kory) exp(iv0;) d;
0(21 . ) .
+ S, > Sienvoto2a 11 = 8(i0) }Bjmsv)  Hy(ksuri) exp(ive;) dr;.
Assuming the existence of the coherent wave, we try, for Eq. (45), the solutions
<Aim>,' - ime exp(inio)v <Bim>i - inl+1Yr»1 exp(i-Kxio)a (46)

Xip = Fip COS Uy,

where X,,, Y,, are constants and K is the complex wave number of the coherent wave. The integrals not
containing the pair correlation function g(r;) can be evaluated by using Green’s theorem and the plane
wave expansion. The integrals containing the pair correlation function g(r;) in Eq. (45) can be also sim-
plified, and Eq. (45) reduces to the system of equations

Xy = —cP, Z E'an+" - ch Z Gva+va

o S @)
Ym = CRm Z E’an+l’ - CSm Z GvaJrva
where
1, ank; ) d
E, = EITE [{27—/(3 J‘,.(2Ka,,) a—anHv(kaa”) - H\,(2kpa,,) a—anJ‘(ZKan)
+ kf)/z g(ri) s (Krji)H, (kprji) i drji‘| (48)

and a similar expression for G, with k, replaced by k. It is to be noted that
F,=F, G,=0G, (49)
Eq. (47) can be combined by using Egs. (35) and (49) to yield

o0

Xm +X—m = _CPm{ZEnXO + Z(E!—m +E’+m)()(v +X—v)} - CQmZ(GV—m - Gv-%—m)(Yv - Y—v)v
v=1

v=1

o0

Y;n - Yfm = CRm{ZEnXO + Z(Efm + E‘+m)(Xv +Xt)} - CSmZ(Gvfm - Gv+m)(Yv - va)v
v=1

v=1



2558 H. Sato, Y. Shindo | International Journal of Solids and Structures 38 (2001) 2549-2571
o0 o0
)(m - Xfm = _CPmZ(vam - Fv+m)(Xv - X—v) - CQm {2Gm YO + E(Gvfm + Gv+m>(Yv + Y—v) }a

v=1 v=1

) ) (51)
Vot Vo = Ry S (s — Fovn) Xy — X0) — csm{szYo 3Gt G+ Yv>}7
y=1 y=1

where m > 0. If we eliminate (X,, + X_,), (¥,, — Y_,,) from Eq. (50) and (X,, — X_,), (¥, + Y_,,) from Eq.
(51), we obtain two equations for K in the form of infinite determinants. It can be shown that the values of
K thus determined are the complex wave numbers K, K, of the coherent P and SV waves, respectively. The
effects of multiple scattering on the coherent waves are of great practical importance for the concentration
¢ =0.01-0.4. At very low concentrations (¢ < 0.01), multiple scattering can be neglected and each scatterer
can be treated as independent.

Assuming kyao, ksyao and L to be sufficiently small, compared to the wave length, we obtain from Eq. (48)
by expanding the Bessel and Hankel functions and retaining the lowest order terms

1 <K>V
Fo———— | — | +L, (52)
1= (K /ky)* \ K

where
{LO = —V KL*{1 +In (3k,L) — jin},

» 53
L—lkagB(g), v>1 (33)

v T2y

and similar expressions for G,, I, with k, replaced by k. The effective in-plane bulk modulus £* and shear
modulus p* can be easily obtained from the phase velocities Re(k,/K,), Re(ks /Ky ) of the effective P and
SV waves as follows:

- ()oY
o))

where the average mass density p* is

h\? n 1k 201 h
—pdl—c(14+ 2 ~ 22 )4 56
o) pone e b (4250 1)) 59

4. Numerical results and discussions

To examine the effect of interface properties on the phase velocities and attenuations of coherent plane
waves through the composite medium, for a given value of kway = apw/cyy, the coefficients P,, O, R,, S, are
computed. Next, the complex coefficient matrix M (or N) corresponding to (X, + X_,), (¥, — Y_.) (Eq.
(50)) (or (X, — X_.), (Y + Y_)) (Eq. (51)) is formed. The complex determinant of the coefficient matrix is
computed using standard Gauss elimination techniques. For a given ayw/cs, the root of the equation
det M = 0 (or det N = 0) is searched in the complex K, (or K,,) plane using Muller’s method. The efficacy
of the quasicrystalline approximation depends on the accuracy of the spatial correlation between two fibers,
i.e., the pair correlation function (Kim, 1996). For the statistical parameters, we take ¥ = exp(2a,/L) ~ 1
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Table 1
Material properties of SiC and Al
SiC po (kg/m®) U, (GPa) Zo + 24 (GPa) Vo
3181 188.1 474.2 0.17
Al p (kg/m?) u (GPa) A+ 2u (GPa) v
2706 26.7 110.5 0.34

and tentatively take L = Lyc. Good initial guesses are provided by Eq. (50) (or Eq. (51)) and Egs. (52) and
(53) at low values of ayw/cg, and these can be used systematically to obtain quick convergence of roots at
increasingly higher values of ayw/cy,. The values of K, and K,,, as determined above, are obviously
complex. For the relevant roots, the real and imaginary parts should be positive. The phase velocities of
propagation of the coherent P and SV waves are Re(k,/K,) and Re(k, /Ky ), respectively. Their corre-
sponding attenuations are Im(K,/k,) and Im(K,, /ks,) . The considered composite was a SiC-Al composite.
The constituent properties are given in Table 1.

One of the used environments for most of the metal matrix composite systems is the thermal environ-
ment, particularly in high temperatures. It is to be noted that minimization of overall thermal stresses in a
composite medium is desirable for better structural reliability in the actual application. The common
problem has been the large difference in thermal expansion characteristics of ceramics and metals (Taya and
Arsenault, 1989). A typical functionally graded material (FGM) structure consists of a change from fully
ceramic on one side to fully metal on the other side, with the intermediate regions consisting of a mixture of
both constituents, varying in volume concentration with distance. Such a design would allow a gradual
change in thermal expansion mismatch, minimizing the thermal stresses arising from cooling or heating.
Controlled deposition of two materials is feasible in techniques such as chemical vapor deposition (CVD)
method (Uemura et al., 1990).

First of all, we consider a graded interface layer which consists of varying proportions of SiC and Al.
Two special cases of graded interface material are considered. The volume concentrations ¢, (¢ = I,1I) of
SiC for Cases I and II are given by

Case 1
1 (V,'ga()),
a(r) =143 (a<ri<ao+h), (57)
0 (Cl() +h<ri)7
Case 11
1 (ri<a0)7
en(r) =< (1-52)" (ap<r;<ap+h), (58)
0 (ao +h<r).

Using these equations, a number of profiles in the variation of volume concentration of SiC with distance
can be examined, by varying the exponent y. The variations in volume concentrations of SiC along the
radial axis are shown in Fig. 2 for Cases I and II. Due to the changes in relative proportions of SiC and Al,
elastic properties vary across the thickness of the graded interface layer. The Lamé constants 4, and u, of
the graded interface layer are considered to vary as (Tuchinskii, 1983)

E,v
do(r) = — 0 (=111, ap<r < :
‘I(rl) (1 + Vq)(l _ 2Vq) (q A, agxr ao +h) (59)
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Fig. 2. The forms of variations in the volume concentration of SiC in a graded interface layer.

E
1) ==t (q=LII, ag<r,<ao+h), (60)
A,
where E, and v, are the Young’s modulus and the Poisson’s ratio of the graded interface layer in the form
-1

; (61)

1—¢, 4
_|_
p(L+v) (1 =e2) + (L +vo)e2  u(1+v)(1 —¢)” + po(1 +v0)(2 = ¢,)e,

Eq(ri) =2

_ =G = wep 1 —¢,(1 - )}
vy(ri) = {1=c,(1=B)H1L —c,(1 =1/B)} -

with

y v(l — cq)Z +v0(2 — ¢)ey (63)

v(1 =¢2) + voc;

p(1+v)(1 - Cq)z + #o(1 4 v0)(2 — ¢)ey

= 64
b p(1+v)(1 = c2) + po(1 + vo)c2 (64)

The density is given by
p,(ri) = p(1 —¢y) +pocy (g=L1, ag<ri<ag+ h). (65)

The material properties of the layers given above are calculated at the midpoint of each layer assuming
variations of Cases I and II from the boundary of the fiber to the matrix medium. Among the functional
forms considered, the linear variation of Case II (y =1.0) in composition, across the graded interface layer,
will result in the least residual stresses in all types of structures.
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Fig. 4. Effect of multiple scattering on phase velocities vs frequency for effective P and SV waves.

Fig. 3 shows the variation of the phase velocity Re(k,/K,) of the effective P wave with the number of
layers n for Case II (y =1.0) and ¢ =0.3, h/ay =0.1, apw/cs, = 1.0 (kLo = Low/csy, = 1.0). Case II
(y = 1.0) refers to the case of the interface material through which the volume concentration varies linearly
from that of the fibers to that of the matrix. It is found that the truncation after n = 30 gives practically
adequate results for Case II (y = 1.0). In Fig. 4, we have shown a comparison of the results of multiple
scattering (Low/cgy = 1.0) with the results of single scattering, where we had studied the phase velocities
Re(k,/K,), Re(ky /Ky) of the effective P and SV waves with the frequency ayw/cs, for Case II (y = 1.0) and
¢=0.3,h/ay = 0.1. One sees from the figure that the discrepancies in the phase velocities obtained by these
two methods appear for the frequency considered. The effect of the graded interface layer on Re(k,/K,) at
apw/cy = 1.0 for Case I, Case II (y =0.2,1.0,5.0) and ¢ =0.3 (Low/cyy = 1.0) is shown in Fig. 5.
The figure shows that the phase velocity Re(k,/K,) increases with the %/ay ratio, and depends on the
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constituents and the nature of the interface layer. The phase velocity for Case I, which was evaluated by
taking n = 30 and 32, agreed to at least three decimal places. Thus, it may be said that the result for n = 30
is, from a practical view point, quite satisfactory.

Figs. 6 and 7 show the variations of the phase velocities Re(k, /K},), Re(ks /Ky ) of the effective P and SV
waves with the frequency ayw/cg, for Case II (y = 0.2,1.0,5.0) and ¢ = 0.3, h/ay = 0.0,0.1 (Lyw/csy, = 1.0).
The interface effect increases the phase velocities. Figs. 8 and 9 show the variations of the attenuations
Im(K,/ky), Im(Ky/ks) of the effective P and SV waves with the frequency ayw/cs, for Case II
(y=10.2,1.0,5.0)and ¢ = 0.3, h/ag = 0.0,0.1 (Lyw/cs, = 1.0). The attenuations increase with the frequency.
The computations carried out reveal that the truncation after n = 30 gives practically adequate results at
any desired finite frequency for Case II.

Fig. 10 shows the variation of the effective in-plane bulk modulus £* of SiC-Al with the frequency
ayw/cs, for Case II (y = 0.2,1.0,5.0) and ¢ = 0.3, h/ap = 0.0,0.1 (Lyw/cy, = 1.0). The interface effect in-
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creases the effective in-plane bulk modulus. Fig. 11 also shows the variation of the effective in-plane shear
modulus p* of SiC-Al with the frequency ayw/cy, for Case 11 (y = 0.2,1.0,5.0) and ¢ = 0.3, #/ay = 0.0,0.1
(Low/csy = 1.0). The effective in-plane shear modulus decreases as the frequency increases and the interface
effect increases the effective in-plane shear modulus.

Secondly, we consider an imperfect interface layer. When the interface layer includes different mic-
rodefects such as porosity, inclusions, or cracks, the elastic moduli are smaller than those of the fiber
(Huang et al., 1997). Four special cases of imperfect interface material are considered. The elastic properties
of Cases III a—d are given by
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Case III a
/1111(7’1‘) = o,
t (1) = o,

pm(ri) = po (a0 <ri<ag+h),
Case III b
A4
/1111(7”5) = TO,
K+ o

tn (i) = 5

+
P (7:) =2 2'00 (ap<ri<ag+h),
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Case III ¢
}v[][(l’i) = }v,
i (1) = 1, (68)
pu(r) =p (a<ri<ao+h),
Case III d
Ao — A
}v[”(l",') = }v — 010 s
Hy — 1
(1) = 0 — 010 ) (69)
Po—P

pm(ri) =p — 10 (ag<ri<ag+h).

Figs. 12 and 13 show the variations of the phase velocities Re(k,/K},), Re(ky, /Ky,) of the effective P and
SV waves with the frequency apw/cg, for Cases Il a-d and ¢ = 0.3, h/ag = 0.1 (Lyw/cyy = 1.0). Figs. 14 and
15 show the variations of the attenuations Im(X,/k,), Im(Ky,/ks ) of the effective P and SV waves with the
frequency apw/cy, for Cases 111 a-d and ¢ = 0.3, h/ay = 0.1 (Lyw/cs, = 1.0).

Finally, we consider the static effective elastic constants of composites. As ayw/cy, — 0, the dynamic
effective in-plane bulk modulus and shear modulus tend to the static solutions. The expressions for the
static effective elastic constants of composites are given in Appendix A. Fig. 16 shows the variation of the
static effective in-plane bulk modulus &* with the volume concentration ¢ for #/ay = 0.0. A comparison of
the static effective in-plane bulk modulus is made in ayw/cs, = 0.0 (Low/csy, = 0.01), Eshelby method (Eq.
(A.1)), law of mixture (Eq. (A.3)) and the composite cylinder assemblage (CCA) model (Hashin and Rosen,
1964) (Eq. (A.5)). It should be emphasized that the results agree much better with those obtained from the
Eshelby method and the CCA model over the full range of the concentration. In Fig. 17, the static effective
in-plane shear modulus u* is plotted as a function of concentration ¢ for ayw/ce, = 0.0, h/ag = 0.0
(Low/csy = 0.01) and also compared with Eshelby method (Eq. (A.2)), law of mixture (Eq. (A.4)) and the
generalized self consistent model (GSCM) (Christensen and Lo, 1979) (Eq. (A.6)). Again, the agreement in
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the static effective in-plane shear modulus calculated from the present theory and from the Eshelby method
is excellent.

In conclusion, the multiple scattering of compressional and shear waves by circular fibers with thick
nonhomogeneous interface layers was analyzed. The interface effect can vary phase velocities, attenuations
of coherent plane waves in a metal matrix composite and effective elastic constants, and depends on the
frequency and the material properties of the interface layers. The numerical results at the volume con-
centration of fibers, ¢ = 0.3, were obtained for any given finite frequency, and layers with nonhomogeneous
elastic properties of any desired finite thickness. Specially designed interface layers are used in modern
composites to improve fracture toughness, chemical compatibility, and matching of thermal expansion
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coefficients between composite constituents. It is hoped that this study will help in assessing the feasibility of
determining interface characteristics by ultrasonic means.

Appendix A

Using the Eshelby method, we obtain the effective in-plane bulk modulus £* and shear modulus u* as
Wakashima (1976).

(ko — k)(1/ko — 1/k)

K==k kot ol = &) e + ik

(A.1)
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(o — 1) (1/pg — 1/ 1)
(1= c)/u+c/ug+ (k/uo)/ (k +2p)° (A2)

where k = A + u, ko = Ao + 1, are the in-plane bulk moduli of the matrix and fiber. Making use of the law of
mixture, we also have
E*
. _ A.
k 2(1+v)(1 —2v+)’ (A.3)

w=1=cu+cpy+c(l—c)

. F
b =aawy (A4)
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where £ and v* are the Young’s modulus and Poisson’s ratio of a fiber-reinforced composite in the form

B 2(1 + vo) (1 + v)pop

T+ )to(1 — )+ (1 + Ve

vi=v(1 —¢) + ve.

Using the CCA model (Hashin and Rosen, 1964), we also obtain the effective in-plane bulk modulus &* of a

fiber-reinforced composite in the form
clko — k) (k + w)

ko + 1 —clko —p)

K=k + (A.5)

The GSCM (Christensen and Lo, 1979) yields an expression for the effective in-plane shear modulus over
the entire volume fraction range. Their result is the quadratic equation

A<%>+2B<%*>+C:O, (A.6)

where
A=73c(1 —c)2<“°— 1> <°+n0) + {°n+non— (%’7_770>C3}{'10<MO_ 1) <”° + 1)}
It It Iz
B = -3¢(l1 —c)2<@— 1> (@-1-7]0)
It I
1
e () e ()5 om) (50w}
It I 1 I It
c
+§(f1+1)<@— 1){@+no+ (@n—n())@},
I It It
cova-7(82) (ow) o {800 (3 e} (o (-0
I I I I I I
n=23—4y,
7]0:3—4\)0.
Appendix B

Yang and Mal (1995, 1996) have used a homogenization technique which combines the GSCM and a
statistical averaging procedure to study the influence of the interface on the static and dynamic properties of
composites. The material used for computations is a titanium aluminide matrix composite reinforced with
coated silicon carbide fibers. The fiber volume concentration of the composite is 0.35. The constituent
properties given in Table 2 are taken from Yang and Mal (1996). We have shown the results calculated
from the present theory for the SiC—C-Ti composite. Fig. 18 shows the variation of the phase velocity
Re(k,/K,) of the effective P wave with the frequency ayw/cy, for h/ay =0.0,0.05,0.1 and ¢ =0.35
(Lyw/csy = 1.0). The general behavior of the phase velocity is similar to that derived by Yang and Mal
(1995, 1996).
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Table 2
Material properties of SiC, C and Ti
SiC po (kg/m?) U, (GPa) Jo + 24, (GPa) Vo
3200 172.0 518.8 0.25
C pi (kg/m’) w (GPa) 1+ 2y (GPa) Vi
1400 14.3 38.6 0.21
Ti p (kg/m®) u (GPa) A+2u (GPa) v
4500 37.1 129.9 0.30
1-50_""I""I'"'I""I""I""_
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Fig. 18. Effect of interface thickness of C on phase velocity vs frequency for P wave in a SiC—C-Ti composite.
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